Regional arterial stress-strain distributions referenced to the zero-stress state in the rat.

نویسندگان

  • Jingbo Zhao
  • Judd Day
  • Zhuang Feng Yuan
  • Hans Gregersen
چکیده

Morphometric and stress-strain properties were studied in isolated segments of the thoracic aorta, abdominal aorta, left common carotid artery, left femoral artery, and the left pulmonary artery in 16 male Wistar rats. The mechanical test was performed as a distension experiment where the proximal end of the arterial segment was connected via a tube to the container used for applying pressures to the segment and the distal end was left free. Outer wall dimensions were obtained from digitized images of the arterial segments at different pressures as well as at no-load and zero-stress states. The results showed that the morphometric data, such as inner and outer circumference, wall and lumen area, wall thickness, wall thickness-to-inner radius ratio, and normalized outer diameter, as a function of the applied pressures, differed between the five arteries (P < 0.01). The opening angle was largest in the pulmonary artery and smallest in thoracic aorta (P < 0.01). The absolute value of both the inner and outer residual strain and the residual strain gradient were largest in the femoral artery and smallest in the thoracic aorta (P < 0.01). In the circumferential and longitudinal direction, the arterial wall was stiffest in the femoral artery and in the thoracic aorta, respectively, and most compliant in the pulmonary artery. These results show that the morphometric and biomechanical properties referenced to the zero-stress state differed between the five arterial segments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-Dependent Hygro-Thermal Creep Analysis of Pressurized FGM Rotating Thick Cylindrical Shells Subjected to Uniform Magnetic Field

Time-dependent creep analysis is presented for the calculation of stresses and displacements of axisymmetric thick-walled cylindrical pressure vessels made of functionally graded material (FGM). For the purpose of time-dependent stress analysis in an FGM pressure vessel, material creep behavior and the solutions of the stresses at a time equal to zero (i.e. the initial stress state) are needed....

متن کامل

Effect of Abutment Angulation and Material on Stress and Strain Distributions in Premaxillary Bone: A Three-Dimensional Finite Element Analysis

Background and Aim: Dental implants with angled abutments are often inserted in the anterior maxillary region due to the status of the residual ridge and aesthetic considerations. The purpose of this study was to assess stress and strain distributions in the premaxillary bone around dental implants by means of finite element analysis (FEA). Materials and Methods: Four three-dimensional (3D) fi...

متن کامل

Determination of Load and Strain-Stress Distributions in Hot Closed Die Forging Using the Plasticine Modeling Technique

An axisymmetric hot closed die-forging process has been studied by physical modeling technique using the plasticine. To observe the material flow pattern, layers of plasticine with different colors were used. The normal direction to the layers was considered a principal direction. The strain distribution was obtained by measuring the thickness of the plasticine layers. Based on the strain distr...

متن کامل

Development of a Predictive Finite Element Model For Investigation of Phases Behavior After Cold Rolling Process

 One of the surface defects that arise in sheet metal working is when the part removes from the die. Since there are no external forces to make this defect, the origin of such fail is known as residual stress. Residual stress can develop in sheet metal forming due to non uniform deformation. In this paper, the workpiece is carbon steel with different volume fractions and arrangement of ferrite ...

متن کامل

A New Approach for Stress State - Dependent Flow Localization Failure Bounded Through Ductile Damage in Dynamically Loaded Sheets

In this paper, a new approach is proposed for stress state - dependent flow localization in bifurcation failure model bounded through ductile damage in dynamically loaded sheets. Onset of localized necking is considered in phenomenological way for different strain rates to draw the forming limit diagram (FLD). Using a strain metal hardening exponent in the Vertex theory related to the strain ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 282 2  شماره 

صفحات  -

تاریخ انتشار 2002